Feature Generators
Module Contents
- class xr_fresh.feature_calculator_series.abs_energy[source]
Bases:
TimeModule
Returns the absolute energy of the time series, which is the sum of the squared values.
\[E = \sum_{i=1}^{n} x_i^2\]- Parameters:
x (numpy.ndarray) – Geowombat series object containing a time series of images.
- Returns:
The absolute energy of the time series.
- Return type:
E (numpy.ndarray)
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.absolute_sum_of_changes[source]
Bases:
TimeModule
Returns the sum over the absolute value of consecutive changes in the series x.
\[\sum_{i=1}^{n-1} \mid x_{i+1} - x_i \mid\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.autocorrelation(lag=1)[source]
Bases:
TimeModule
Calculates the autocorrelation of the specified lag, according to the formula [1].
\[\frac{1}{(n-l)\sigma^{2}} \sum_{t=1}^{n-l}(X_{t}-\mu )(X_{t+l}-\mu)\]where \(n\) is the length of the time series \(X_i\), \(\sigma^2\) its variance and \(\mu\) its mean. l denotes the lag.
References
[1] https://en.wikipedia.org/wiki/Autocorrelation#Estimation
- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
lag (int) – lag at which to calculate the autocorrelation (default: {1}).
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.count_above_mean(mean=None)[source]
Bases:
TimeModule
Returns the number of values in x that are higher than the mean of x.
\[N_{\text{above}} = \sum_{i=1}^n (x_i > \bar{x})\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
mean (int) – An integer to use as the “mean” value of the raster
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.count_below_mean(mean=None)[source]
Bases:
TimeModule
Returns the number of values in x that are lower than the mean of x.
\[N_{\text{below}} = \sum_{i=1}^n (x_i < \bar{x})\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
mean (int) – An integer to use as the “mean” value of the raster
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.doy_of_maximum(dates=None)[source]
Bases:
TimeModule
Returns the day of the year (doy) location of the maximum value of the series - treats all years as the same.
- Parameters:
dates (numpy.ndarray) – An array holding the dates of the time series as integers or as datetime objects.
x (numpy.ndarray) – Geowombat series object contain time series of images.
- Returns:
The day of the year of the maximum value.
- Return type:
int
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.doy_of_minimum(dates=None)[source]
Bases:
TimeModule
Returns the day of the year (doy) location of the minimum value of the series - treats all years as the same.
- Parameters:
dates (numpy.ndarray) – An array holding the dates of the time series as integers or as datetime objects.
x (numpy.ndarray) – Geowombat series object contain time series of images.
- Returns:
The day of the year of the minimum value.
- Return type:
int
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.kurtosis(fisher=True)[source]
Bases:
TimeModule
Compute the sample kurtosis of a given array along the time axis.
\[G_2 = \frac{\mu_4}{\sigma^4} - 3\]where \(\mu_4\) is the fourth central moment and \(\sigma\) is the standard deviation.
- Parameters:
array (GeoWombat series object) – An object that contains geospatial and temporal metadata.
fisher (bool, optional) – If True, Fisher’s definition is used (normal ==> 0.0). If False, Pearson’s definition is used (normal ==> 3.0).
- Returns:
Returns the kurtosis of x (calculated with the adjusted Fisher-Pearson standardized moment coefficient G2).
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.kurtosis_excess(Fisher=True)[source]
Bases:
TimeModule
Compute the excess kurtosis of a given array along the time axis.
\[G_2 = \frac{\mu_4}{\sigma^4} - 3\]where \(\mu_4\) is the fourth central moment and \(\sigma\) is the standard deviation.
- Parameters:
array (GeoWombat series object) – An object that contains geospatial and temporal metadata.
fisher (bool, optional) – If True, Fisher’s definition is used (normal ==> 0.0). If False, Pearson’s definition is used (normal ==> 3.0).
- Returns:
Returns the excess kurtosis of X (calculated with the adjusted Fisher-Pearson standardized moment coefficient G2).
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.large_standard_deviation(r=2)[source]
Bases:
TimeModule
Boolean variable denoting if the standard dev of x is higher than ‘r’ times the range.
- Parameters:
r (float, optional) – The percentage of the range to compare with. Default is 2.0.
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.longest_strike_above_mean(mean=None)[source]
Bases:
TimeModule
Returns the length of the longest consecutive subsequence in x that is bigger than the mean of x.
- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.longest_strike_below_mean(mean=None)[source]
Bases:
TimeModule
Returns the length of the longest consecutive subsequence in x that is smaller than the mean of x.
- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.maximum[source]
Bases:
TimeModule
Returns the maximum value of the time series x.
\[x_{\text{max}}\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
- Returns:
The maximum value.
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(x)Calculates the user function.
- calculate(x)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.mean[source]
Bases:
TimeModule
Returns the mean value of the time series x.
\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
- Returns:
The mean value.
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(x)Calculates the user function.
- calculate(x)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.mean_abs_change[source]
Bases:
TimeModule
Returns the mean over the absolute differences between subsequent time series values which is
\[\frac{1}{n-1} \sum_{i=1}^{n-1} | x_{i+1} - x_{i} |\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
- Returns:
The mean absolute change.
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(x)Calculates the user function.
- calculate(x)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.mean_change[source]
Bases:
TimeModule
Returns the mean over the differences between subsequent time series values which is
\[\frac{1}{n-1} \sum_{i=1}^{n-1} ( x_{i+1} - x_{i} )\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
- Returns:
The mean change.
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.mean_second_derivative_central[source]
Bases:
TimeModule
Returns the mean value of a central approximation of the second derivative of the time series.
\[\frac{1}{2(n-2)} \sum_{i=1}^{n-2} \frac{1}{2} (x_{i+2} - 2 \cdot x_{i+1} + x_{i})\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
- Returns:
The mean second derivative.
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.median[source]
Bases:
TimeModule
Returns the median of the time series x.
\[\tilde{x}\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
- Returns:
The median value.
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(x)Calculates the user function.
- calculate(x)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.minimum[source]
Bases:
TimeModule
Returns the minimum value of the time series x.
\[x_{\text{min}}\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
- Returns:
The minimum value.
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(x)Calculates the user function.
- calculate(x)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.ols_slope_intercept(returns='slope')[source]
Bases:
TimeModule
Calculate the slope, intercept, and R2 of the time series using ordinary least squares.
- Parameters:
gw (array) – the time series data
returns (str, optional) – What to return, “slope”, “intercept” or “rsquared”. Defaults to “slope”.
- Returns:
Return desired time series property array.
- Return type:
array
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.quantile(q=None, method='linear')[source]
Bases:
TimeModule
Calculates the q-th quantile of x. This is the value of x greater than q% of the ordered values from x.
- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
q (float) – Probability or sequence of probabilities for the quantiles to compute. Values must be between 0 and 1 inclusive.
- Returns:
The q-th quantile of x.
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.ratio_beyond_r_sigma(r=2)[source]
Bases:
TimeModule
Returns the ratio of values that are more than r times the standard deviation away from the mean of the time series.
\[P_{r} = \frac{1}{n} \sum_{i=1}^{n} (| x_i - \bar{x} | > r \cdot \sigma)\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
r (float) – The number of standard deviations. Defaults to 2.
- Returns:
The ratio of values beyond r sigma.
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.skewness[source]
Bases:
TimeModule
Returns the skewness of x.
\[\frac{n}{(n-1)(n-2)} \sum \left( \frac{X_i - \overline{X}}{s} \right)^3\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
axis (int, optional) – Axis along which to compute the kurtosis. Default is 0.
fisher (bool, optional) – If True, Fisher’s definition is used (normal=0). If False, Pearson’s definition is used (normal=3). Default is False.
- Returns:
The skewness.
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.standard_deviation[source]
Bases:
TimeModule
Returns the standard deviation of x.
\[\sqrt{ \frac{1}{N} \sum_{i=1}^{n} (x_i - \bar{x})^2 }\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
- Returns:
The standard deviation.
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(x)Calculates the user function.
- calculate(x)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.sum[source]
Bases:
TimeModule
Returns the sum of all values in x.
\[S = \sum_{i=1}^{n} x_i\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
- Returns:
The sum of values.
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(x)Calculates the user function.
- calculate(x)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.symmetry_looking(r=0.1)[source]
Bases:
TimeModule
Measures the similarity of the time series when flipped horizontally. Boolean variable denoting if the distribution of x looks symmetric.
\[| x_{\text{mean}} - x_{\text{median}} | < r \cdot (x_{\text{max}} - x_{\text{min}} )\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
r (float) – A threshold value, the percentage of the range to compare with (default: 0.1)
- Returns:
The symmetry measure.
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.ts_complexity_cid_ce(normalize=True)[source]
Bases:
TimeModule
Returns the time series complexity measure CID CE.
\[\sqrt{ \sum_{i=1}^{n-1} ( x_{i} - x_{i-1})^2 }\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
normalize – should the time series be z-transformed? (default: True)
- Returns:
The complexity measure.
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.unique_value_number_to_time_series_length[source]
Bases:
TimeModule
Returns a factor which is 1 if all values in the time series occur only once, and below one if this is not the case. In principle, it just returns
# of unique values / # of values
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.variance[source]
Bases:
TimeModule
Returns the variance of x.
\[\sigma^2 = \frac{1}{N} \sum_{i=1}^{n} (x_i - \bar{x})^2\]- Parameters:
x (numpy.ndarray) – Geowombat series object contain time series of images.
- Returns:
The variance.
- Return type:
float
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(x)Calculates the user function.
- calculate(x)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)
- class xr_fresh.feature_calculator_series.variance_larger_than_standard_deviation[source]
Bases:
TimeModule
Returns 1 if the variance of x is larger than its standard deviation and 0 otherwise.
\[\sigma^2 > \sigma\]- Parameters:
x (numpy.ndarray) – Geowombat series object containing a time series of images.
- Returns:
1 if variance is larger than standard deviation, 0 otherwise.
- Return type:
int
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(x)Calculates the user function.
- calculate(x)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)