Interpolation Functions
Functions
- class xr_fresh.interpolate_series.interpolate_nan(missing_value=None, interp_type='linear', count=1, dates=None)[source]
Interpolate missing values in a geospatial time series. Without dates set this class assumes a regular time interval between observations. With dates set this class can handle irregular time, based on the DOY as an index.
- Parameters:
missing_value (int or float, optional) – The value to be replaced by NaNs. Default is None.
interp_type (str, optional) – The type of interpolation algorithm to use. Options include “linear”, “nearest”, “zero”, “slinear”, “quadratic”, “cubic”, “previous”, “next”, “cubicspline”, “spline”, and “UnivariateSpline”. Default is “linear”.
dates (list[datetime]) – List of datetime objects corresponding to each time slice.
count (int, optional) – Overrides the default output band count. Default is 1.
Example Usage:
pth = "/home/mmann1123/Dropbox/Africa_data/Temperature/" files = sorted(glob(f"{pth}*.tif"))[0:10] strp_glob = f"{pth}RadT_tavg_%Y%m.tif" dates = sorted(datetime.strptime(string, strp_glob) for string in files) date_strings = [date.strftime("%Y-%m-%d") for date in dates] # window size controls RAM usage, transfer lab can be jax if using GPU with gw.series(files, window_size=[640, 640], transfer_lib="numpy") as src: src.apply( func=interpolate_nan( missing_value=0, count=len(src.filenames), dates=dates, ), outfile="/home/mmann1123/Downloads/test.tif", num_workers=min(12, src.nchunks), bands=1, )
Methods
__call__
(w, array, band_dict)Call self as a function.
calculate
(array)Calculates the user function.
- calculate(array)[source]
Calculates the user function.
- Parameters:
| (data (numpy.ndarray) –
jax.Array
|torch.Tensor
|tensorflow.Tensor
): The input array, shaped [time x bands x rows x columns].- Returns:
numpy.ndarray
|jax.Array
|torch.Tensor
|tensorflow.Tensor
:Shaped (time|bands x rows x columns)